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Abstract

Here, the dynamic thermal buckling behavior of functionally graded spherical caps is studied considering geometric

nonlinearity based on von Karman’s assumptions. The formulation is based on first-order shear deformation theory and it

includes the in-plane and rotary inertia effects. The material properties are graded in the thickness direction according to

the power-law distribution in terms of volume fractions of the material constituents. The effective material properties are

evaluated using homogenization method. The governing equations obtained using finite element approach are solved

employing the Newmark’s integration technique coupled with a modified Newton–Raphson iteration scheme. The pressure

load corresponding to a sudden jump in the maximum average displacement in the time history of the shell structure is

taken as the dynamic buckling load. The present model is validated against the available isotropic case. A detailed

numerical study is carried out to highlight the influences of shell geometries, power law index of functional graded material

and boundary conditions on the dynamic buckling load of shallow spherical shells.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Thin spherical shells form an important class of structural components, with many significant applications
in engineering fields. The dynamic response of such shells may lead to the phenomenon of dynamic snapping
or dynamic buckling. As these kinds of responses cannot be evaluated accurately using small displacement
theory, studies based on nonlinear dynamic analysis has received considerable attention in the literature.

The analysis of isotropic shallow spherical shells has been carried out by Budiansky and Roth [1], Simitses
[2], Haung [3], Stephens and Fulton [4], Ball and Burt [5], and Stricklin and Martinez [6]. Budiansky and Roth
[1] have employed the Galerkin method whereas Simitses [2], adopted Ritz-Galerkin procedure. A finite
difference scheme has been introduced in the method of solution by Haung [3], Stephens and Fultton [4], Ball
and Burt [5], and Kao [6] while Stricklin and Martinez [7], Saigal et al. [8] and Yang and Liaw [9] utilized
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efficient finite element procedure. The limited studies available on axisymmetric dynamic buckling of single-
layer orthotropic shallow spherical shells are based on classical lamination theory [10,11], and multilayered
case by Ganapathi et al. [12].

The use of functionally graded materials as structural components has gained much popularity in recent
years. Functionally graded materials are composite materials that are microscopically inhomogeneous, and
the mechanical properties vary smoothly or continuously from one surface to the other. It is this continuous
change that results in gradient properties in functionally graded materials. Typically, these materials are made
from a mixture of ceramic and metal, or a combination of different materials. The concept of functionally
graded materials (FGMs) was first introduced in 1984 by the group of material scientists in Japan, as ultrahigh
temperature resistant materials for aircraft, space vehicles and other engineering applications [13]. Studies in
FGM structures are largely confined to the analysis of thermal stress and deformation [14–16]. Analytical and
numerical studies have been carried out to investigate the thermo-mechanical behavior of FGMs [17–19]. Due
to non-homogeneous nature of FGM and the high mathematical complexities involved, only few
investigations on transient dynamic responses of FGM are yet known in the literature [20–23]. The vibration
and parametric instability analysis of functionally graded cylindrical shells under harmonic axial loading has
been studied in Refs. [24,25]. However, to the authors’ knowledge, work on the axisymmetric dynamic
buckling behavior of functionally graded material spherical shells is not commonly available in the literature,
and such study is immensely useful to the designers while optimizing the designs of FGMs structures under
dynamic situation.

Here, a three-noded shear flexible axisymmetric curved shell element developed based on the field-
consistency principle [12,26] is employed to analyze the axisymmetric dynamic buckling of clamped
functionally graded spherical caps under externally applied pressure load. Geometric nonlinearity is assumed
in the present study using von Karman’s strain–displacement relations. The material properties are graded in
the thickness direction according to the power-law distribution in terms of volume fractions of the constituents
of the material. The nonlinear governing equations derived are solved employing direct integration method.
The dynamic buckling pressure is taken as the pressure corresponding to a sudden jump in the maximum
average displacement in the time history of the shell structure [1,27]. Numerical results are presented
considering different values for geometrical parameter, and power law index on the dynamic bucking behavior
of functionally graded spherical caps.

2. Theoretical formulation

An axisymmetric functionally graded shell of revolution with radius a, thickness h made of a mixture of
ceramics and metals is considered with the coordinates s, y and z along the meridional, circumferential and
radial/thickness directions, respectively, as shown in Fig. 1. The materials in outer (z ¼ h=2) and inner
(z ¼ �h=2) surfaces of the shell are ceramic and metal, respectively. The Young’s modulus E and density r can
be determined based on Voigt’s rule over the whole range of the volume fraction [28] as

EðzÞ ¼ EcV c þ Emð1� V cÞ; rðzÞ ¼ ðrcVc � rmð1� V mÞ, (1)
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Fig. 1. Geometry and the coordinate system of a spherical cap.

T. Prakash et al. / Journal of Sound and Vibration 299 (2007) 36–43 37



where Vc is the volume fractions of ceramic and is assumed as a power function [29] as

VcðzÞ ¼
2zþ h

2h

� �k

. (2)

Here, k refers the volume fraction exponent (kX0) and Poisson’s ratio n is assumed to be constant. The
variation of the composition of ceramic and metal is linear for k ¼ 1. The value of k equal to zero represents a
fully ceramic shell.

By using the Mindlin formulation, the displacements at a point (s, y, z) are expressed as functions of the
mid-plane displacements u0, v0 and w, and independent rotations bs and by of the radial and hoop sections,
respectively, as

u ðs; y; z; tÞ ¼ u0ðs; y; tÞ þ zbsðs; y; tÞ,

v ðs; y; z; tÞ ¼ v0 ðs; y; tÞ þ zby ðs; y; tÞ,

w ðs; y; z; tÞ ¼ w ðs; y; tÞ, ð3Þ

where t is the time.
Using von Karman’s assumption for moderately large deformation, Green’s strains can be written in terms

of middle-surface deformations as

�f g ¼
�Lp
0

( )
þ

z�b

�s

( )
þ

�NL
p

0

( )
(4)

where, the membrane strains �L
p

n o
, bending strains �bf g, shear strains �sf g and nonlinear in-plane strains

�NL
p

n o
in the Eq. (4) are written as [30]
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where r, R and f are the radius of the parallel circle, radius of the meridional circle and angle made by the
tangent at any point in the middle-surface of the shell with the axis of revolution.

The potential energy functional U can be written in terms of the field variables u0, v0, w0, bs, by and their
derivatives, following the procedure given in the work of Rajasekaran et al. [31], as

UðdÞ ¼ fdgT½ð1=2Þ½K � þ ½ð1=6Þ½N1ðdÞ� þ ð1=12Þ½N2ðdÞ��fdg þ fdgTfFg, (5)

where [K] is the linear stiffness matrix [N1] and [N2] are the nonlinear stiffness matrices linearly and
quadratically dependent on the field variables, respectively, and {F} is the load vector due to externally applied
pressure load. {d} is the vector of the degree of freedom associated to the displacement field in a finite element
discretization.

The kinetic energy of the shell is given by

TðdÞ ¼ ð1=2Þ
Z

A

p _u2
0 þ _v

2
0 þ _w2

0

� ��
þI _b

2

s þ
_b
2

y

� �i
dA, (6)
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where

p ¼

Z h=2

�h=2
rðzÞdz; I ¼

Z h=2

�h=2
z2rðzÞdz

and r(z) is the mass density which varies through the thickness of the shell and is given by Eq. (1). The dot
over the variable denotes derivative with respect to time. Using Eqs. (5) and (6) in Lagrange’s equation of
motion, the governing equation for the shell is obtained as

M½ � d
::n o
þ K½ � þ 1

2
N1ðdÞ½ � þ 1

3
N2ðdÞ½ �

� �
df g ¼ Ff g, (7)

where [M] is the mass matrix.
The nonlinear equation (7) is solved by the Newmark’s numerical integration method [32]. Equilibrium is

achieved for each time step through modified Newton–Raphson iteration until the convergence criteria [33]
are satisfied within the specific tolerance limit of less than one percent. The dynamic buckling loads are
evaluated based on the displacement response obtained from Eq. (7).

The criterion suggested by Budiansky and Roth [1] is employed here as it is widely accepted. This criterion is
based on the plots of the peak non-dimensional average displacement in the time history of the structure with
respect to the amplitude of the pressure load (e.g. inserted figure in Fig. 3). There is a load range where a sharp
jump in peak average displacement occurs for a small change in load magnitude. The inflection point of the
load–deflection curve is considered as the dynamic buckling load.

3. Results and discussion

In this section, we use the above formulation to investigate the effect of parameters such as material power
law index and geometric shell parameter on the dynamic buckling pressure of clamped functionally graded
spherical caps subjected to externally applied pressure load. Since the finite element used here is based on the
field consistency approach, an exact integration is employed to evaluate all the strain energy terms. The shear
correction factor, which is required in a first-order theory to account for the variation of transverse shear
stresses, is taken as 5/6. For the present analysis, based on progressive mesh refinement, 15-element
idealization is found to be adequate in modeling the spherical caps. The performance of the element has been
dealt in Refs. [12,26]. For the sake of brevity, such study is not shown here. The initial conditions for obtaining
the nonlinear dynamic response are assumed as zero values for the displacements and velocities. From the
dynamic response curves, the load amplitudes and the corresponding maximum average displacements are
obtained for applying the buckling criteria. The constants a and b (controlling parameters for stability and
accuracy of the solution) in the Newmark’s integration are taken as 0.5 and 0.25, which correspond to the
unconditionally stable scheme in the linear analysis. Since there is no estimate of the time step for the
nonlinear dynamic analysis available in the literature, the critical time step of a conditionally stable finite
difference scheme [34] is introduced as a guide and a convergence study was conducted to select a time step
which yields a stable and accurate solution.

Fig. 2 shows the variations of the volume fractions of ceramic and the stiffness/Young’s modulus in the
thickness direction z for the FGM spherical cap. The outer surface is ceramic rich and the inner surface is metal
rich. The FGM spherical shell considered here consists of aluminum (Al) and alumina (Al2O3). The Young’s
modulus, conductivity and the coefficient of thermal expansion for alumina is Ec ¼ 380GPa, kc ¼ 10.4W/mK,
ac ¼ 7.4� 10�6 1/1C, and for aluminum is Em ¼ 70GPa, km ¼ 204W/mK, am ¼ 23� 10�6 1/1C, respectively.
Poisson’s ratio is chosen as constant, v ¼ 0:3. The spherical cap is of uniform thickness and clamped boundary
conditions considered here is

u0 ¼ v0 ¼ w ¼ bs ¼ by ¼ 0 on r ¼ a.

Results of non-dimensional dynamic pressure, Pcr, are presented for functionally graded spherical caps for
different values of the geometrical parameter l. Pcr and l are defined as

Pcr ¼
1

8
½3ð1� n2Þ�1=2

h

H

� �2
qa4

Ech
4
; l ¼ 2½3ð1� n2Þ�1=4

H

h

� �1=2

.
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Here, H and a are the central shell rise and base radius, respectively. For the chosen shell parameter and
power law index of FGM, the dynamic buckling study is firstly conducted for step loading of infinite duration.

The length of response calculation time t ð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEefh

2=12ð1� n2Þrefa4Þ

q
tÞ in the present study is varied between 1

and 2 with the criterion that in the neighborhood of the buckling, t is large enough to allow deflection–time

curves to develop fully. Eef ð¼ ð1=2Þ
R h=2
�h=2 EðzÞdzÞ; and ref ð¼ ð1=2Þ

R h=2
�h=2 rðzÞdzÞ correspond to effective

modulus and density of FGM for the chosen gradient index, respectively. The time step selected, based on
the convergence study, is dt ¼ 0:002. The value selected for t and dt is of the same order as that of Refs. [5,7].

Fig. 3 highlights the typical nonlinear axisymmetric dynamic response history with time for the functionally
graded spherical shell parameter (l ¼ 6, a/h ¼ 400 and k ¼ 1:0), considering different externally applied
pressure loads. Further, using such plots, the variation of maximum average displacement with applied load
obtained is also highlighted as an inset in Fig. 3 for predicting the critical load. It is seen that there is a sudden
jump in the value of the average displacement when the external pressure reaches the value Pcr ¼ 0:6063 for
the shell considered here. The dynamic snap-through loads predicted in this manner for different values
material power law index are presented in Fig. 4. For comparison purpose, the available analytical results [3]
for isotropic case are also shown in Fig. 4. It is seen that the present results for pure ceramic case (k ¼ 0) are
found to be in very good agreement. However, while comparing with those of Ref. [12] for the isotropic case
(not shown here), some differences for the deep shell parameter may be noticed due to different maximum time
length t employed for shallow and deep cases. Here, t is limited to around 2.5, irrespective of type of shells
whereas it is about 2 in Ref. [12] for deep shell case. Furthermore, it is revealed from Fig. 4 that, with the
increase in power law index k, the critical buckling pressure decreases, irrespective of shell geometrical
parameter. This is attributed possibly due to the stiffness degradation occurs because of the increase in the

ARTICLE IN PRESS

0.0

100.0

200.0

300.0

400.0

500.0

-0.50 -0.30 -0.10 0.10 0.30 0.50

z/h

z/h

E
ff

ec
ti

ve
 Y

o
u

n
g

's
 m

o
d

u
lu

s,
 E

ef
f, 

G
P

a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

k = 0.5

k = 1.0

k = 2.5

k = 5.0

Power law index, k

V
c

Ceramic, k = 0.5, k = 1.0,
k = 2.0 k = 5.0, Metal

(a)

(b)

Fig. 2. Variation of (a) volume fraction of ceramic; and (b) Young’s modulus through thickness of FGM spherical shell.

T. Prakash et al. / Journal of Sound and Vibration 299 (2007) 36–4340



metallic volumetric fraction and structural coupling due to non-homogeneous nature of FGM. It can be also
noted that the rate of decrease in the critical dynamic load value is high with the increase in power law index k

up to 1 and further increase in k leads to less reduction in Pcr, especially, for very shallow or deep shell cases.
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Furthermore, it can be opined that the nature of variation buckling load of FGM shells is qualitatively
somewhat similar as those of isotropic case. It is hoped that the present study is useful for the structural
engineers while dealing with functionally graded skewed structures.
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